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Motivation

This project integrates key concepts previously covered in Bayesian modeling, bivariate normal
distributions, prediction, practical regression (as introduced in MU last year), and the marginal-
ization of probability density functions. Together, these tools form a foundational part of modern
statistical analysis and are applied in a coherent framework to deepen your understanding of
probabilistic reasoning and drawing inference under uncertainty.

Applications. These statistical methods are invaluable for decision-making in real-life scenar-
ios involving uncertainty. Bayesian modeling and regression help predict outcomes in healthcare,
finance, and environmental science, while bivariate normal distributions analyze correlated phe-
nomena such as health factors or consumer behaviors. Recently, these foundational methods
have also fueled the rapid development of state-of-the-art generative models, particularly dif-
fusion models, whose name reflects the mathematical connection to diffusion processes and the
normal distributions underlying their probabilistic formulation. Diffusion models have greatly
advanced image, audio, and text generation, demonstrating superior performance in data syn-
thesis and restoration tasks.

Instructions

• Please work in your DBA project groups. Each group must work independently, without
collaborating with any other groups. Each group must write their own solutions; do not
share your solutions with another group.

• As early as you can, please think about how to divide the various tasks among your group
members (e.g. assign everyone clearly defined, non-overlapping tasks based on individual
strengths). Your group should (physically) meet at least twice (once at the start to divide
the tasks, and once at the end to finalize the report/check answers).

• You are encouraged to use Python for all the computations.

• You are encouraged to use Overleaf to prepare your report in LaTeX.

• If you use methods, ideas, or external resources beyond this course (including software or
personal assistance), clearly describe them, justify their use, and cite all references.

• Any further instructions and a submission link will be uploaded on eDimension. If you
have any questions, please reach out to the TAs.
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Submission

• Each group should submit a single zip file, named ‘Groupx’ (with x replaced by your group
number). The zip file should contain a typed report in PDF format, limited to five A4
sized pages, as well as any relevant Python computations, suitably annotated. (Any cover
page or reference section does not count towards the page limit.)

• You should also submit a hard copy of your project report to me, or place it in my
pigeonhole (details to follow).

• The report should include a brief and descriptive summary of how each group member
contributed to the project. Please do not just say ‘each member contributed equally’. If
any members did not contribute, please clearly indicate this in the report.

• The report should look more professional than a typical homework submission. Please
explain your logic (in words, not just with maths) for each solution, and show all relevant
steps, so that a reader can easily follow and reconstruct your reasoning.

• The project will be graded on:

– Correctness, clarity, and quality of your solutions,

– Appropriate level of working and explanation shown,

– Evidence of mastery of the course material, even creativity,

– Presentation, readability, and appropriate citations.

• Deadline: 20 April 2025, 11.59 PM, 21 April 2025, 11.59 PM
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Question 1 (10 marks)

Suppose we have a multiple linear regression model with K input features:

yn = w0 + w1x1n + w2x2n + · · ·+ wKxKn + ϵn, (1)

where ϵn ∼ N (0, σ2). In vector form, this corresponds to:

yn = w⊤xn + ϵn

where w = [w0, w1, . . . , wK ]⊤ and xn = [1, x1n, x2n, . . . , xKn]
⊤. Stack all responses into one

vector y = [y1, y2, . . . , yN ]⊤ and all input vectors into a data matrix

X =


x⊤
1

x⊤
2
...

x⊤
N

 ,

we obtain the full model for the dataset:

y = Xw + ϵ, where ϵ ∼ N (0, σ2IN )

with ϵ = [ϵ1, ϵ2, . . . , ϵN ]⊤ and IN denotes the N × N identity matrix. Assume we know the
value of σ2. We fix a Gaussian prior for w := [w0, w1, . . . , wK ]. We place a Gaussian prior for
w := [w0, . . . , wK ]. In particular we have

p(w |µ0,Σ0) = N(µ0,Σ0). (2)

Recall that the multivariate normal distribution is parameterized as x ∼ N (µ,Σ), where
the mean vector and covariance matrix are given by:

µ =


µ1

µ2

...
µd

 , Σ =


σ11 σ12 · · · σ1d

σ21 σ22 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σdd


where µ is the d-dimensional mean vector, and Σ is the d× d covariance matrix.

(a) (5 marks) Show that the posterior distribution is given by

p(w |y,X, σ2) = N(µw,Σw) (3)

with Σw and µw take the form

Σw :=

(
1

σ2
X⊤X+Σ−1

0

)−1

, (4)

µw := Σw

(
1

σ2
X⊤y+Σ−1

0 µ0

)
. (5)

(b) (5 marks) We now turn our attention to making predictions. Given a new observation
x♭, we are interested in the posterior predictive distribution

p(y♭ |x♭,X,y, σ2) (6)
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with y♭ being the unobserved data. Show that this density is a Gaussian distribution with
parameters

µ♭ := x⊤
♭ µw, (7)

σ2
♭ := x⊤

♭ Σw x♭ + σ2. (8)

Hint: You may wish to leverage the following standard results for marginal and conditional
Gaussians:

Given a marginal Gaussian distribution for x and a conditional Gaussian distribution
for y given x in the form

p(x) = N(x |µ,Λ−1) (9)

p(y |x) = N(y |Ax+ b,L−1) (10)

then the marginal distribution of y and the conditional distribution of x given y is
given by

p(y) = N(y |Aµ+ b,L−1 +AΛ−1A⊤) (11)

Question 2 (40 marks)

Suppose we take a Bayesian approach to modeling a simplified linear relationship between input
and output data:

yn = w0 + w1xn + ϵn, (12)

where ϵn ∼ N (0, σ2). In this model, w0 is the intercept — a constant bias term that shifts the
line up or down, and w1 is the slope — it determines how strongly, and in what direction, the
output yn changes with the input xn. This can be written in compact vector form as:

yn = w⊤xn + ϵn,

where w = [w0, w1]
⊤ is the weight vector, and xn = [1, xn]

⊤ is the input vector (including a
bias term).

Let the observed input and output data be:

x⊤ = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

y⊤ = [11.99, 11.73, 11.49, 11.25, 11.02, 10.77, 10.52, 10.24, 9.95, 9.64,

9.32, 8.98, 8.65, 8.33, 8.06, 7.71, 7.41, 7.13, 6.90, 6.59,

6.39, 6.10, 5.87, 5.67, 5.47, 5.29, 5.12, 4.95, 4.79, 4.64]

(a) (5 marks) This task concerns sampling from the prior distribution — i.e., computing the

corresponding model outputs ŷ
(i)
n , and plotting these outputs together with the observed

data. Follow these steps:

Define a prior distribution over the weight vector:

w ∼ N (µ0,Σ0),

where

µ0 =

[
0
0

]
Σ0 =

[
100 0

0 5 + sin(x)
x

]
(13)
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where x is your DBA group number. The following specific values for the prior (in Python
syntax) is as follows:

mu0 = np.array([0, 0])

si0 = np.array ([[100 , 0], [0, 5 + sin(x)/x]])

Sample from the prior: Use the following Python function

np.random.multivariate_normal(mu0 , si0 , num_samples)

to draw 10 samples of w from this distribution.

Plot the observed data (x, y) as points. Then, for each sampled weight vector w(i) (for
i = 1, . . . , 10), compute the predicted outputs using the linear model:

ŷ(i)n = w(i)⊤xn,

where each input vector is xn = [1, xn]
⊤. Overlay all 10 predicted functions ŷ(i) on the

same plot, together with the real data, to visualize the variability in predictions implied
by the prior over weights.

(b) (15 marks) Using σ2 = 8, compute the posterior distribution after observing one data
point, i.e.,

x1 = [1, 0]⊤, y1 = 11.99.

In particular:

(a) Write down the posterior distribution p(w |x1, y1) explicitly, specifying its mean vec-
tor and covariance matrix.

(b) Plot 10 samples from the posterior predictive distribution together with the real data.

(c) Where is w0 centered, and why? Explain the figure: why do all sampled lines intersect
at a common point?

(c) (10 marks) Using σ2 = 8, compute the posterior distribution after observing all data
points. Plot 10 samples from the posterior predictive distribution together with the real
data.

(a) Write down the posterior distribution p(w |X,y) explicitly, specifying its mean vector
and covariance matrix. You may use matrix notation for compactness.

(b) Plot 10 samples from the posterior predictive distribution over the input range, and
overlay these predictions with the observed data to visualize how the posterior has
been updated after observing all data points.

(d) (10 marks) Using σ2 = 8, and given a new data point of xnew = 31, write down the predic-
tive posterior distribution, specifying its mean and covariance. Then, plot the predictive
posterior distribution.

A
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